Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(3): e15027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38514926

RESUMO

Hemangioma is a common benign tumour that usually occurs on the skin of the head and neck, particularly among infants. The current clinical treatment against hemangioma is surgery excision, however, application of drug is a safer and more economical therapy for children suffering from hemangioma. As a natural sulfated polysaccharide rich in brown algae, fucoidan is widely recognized for anti-tumour bioactivity and dosage safety in humans. This study aims to demonstrate the anti-tumour effect and underlying mechanism of fucoidan against hemangioma in vivo and in vitro. We investigated the effects of fucoidan by culturing hemangioma cells in vitro and treating BALB/c mice bearing with hemangioma. At first, we measured the cell proliferation and migration ability through in vitro experiments. Then, we tested the expression of epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin pathway-related biomarkers by western blot and qPCR. Furthermore, we applied ß-catenin-specific inhibitor, XAV939, to determine whether fucoidan suppressed EMT via the Wnt/ß-catenin pathway in hemangioma cells. In vivo experiments, we applied oral gavage of fucoidan to treat EOMA-bearing mice, along with evaluating the safety and efficacy of fucoidan. We found that fucoidan remarkably inhibits the proliferation and EMT ability of hemangioma cells, which is dependent on the Wnt/ß-catenin pathway. These results suggest that fucoidan exhibits tumour inhibitory effect on aggressive hemangioma via regulating the Wnt/ß-catenin signalling pathway both in vitro and in vivo, providing a new potent drug candidate for treating hemangioma.


Assuntos
Hemangioma , Polissacarídeos , Via de Sinalização Wnt , beta Catenina , Animais , Criança , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hemangioma/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos
2.
Chemosphere ; 352: 141293, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280645

RESUMO

Heavy metals pollution in soils is an urgent environmental issue worldwide. Phytoremediation is a green and eco-friendly way of remediating heavy metals. However, a systematic overview of this field is limited, and little is known about future development trends. Therefore, we used CiteSpace software to conduct bibliometric and visual analyses of published literature in the field of phytoremediation of heavy metals in soils from the Web of Science core collection and identified research hotspots and development trends in this field. Researchers are paying increased attention to phytoremediation of heavy metals in soils, especially environmental researchers. A total of 121 countries or regions, 3790 institutions, 4091 funded organisations and 15,482 authors have participated in research in this area. China, India, and Pakistan are the largest contributors. There has been extensive cooperation between countries, institutions, and authors worldwide, but there is a lack of cooperation among top authors. 'Calcareous soil', 'Co-contaminated soil' and 'Metal availability' are the most intensively investigated topics. 'EDTA', 'Plant growth-promoting Rhizobacteria', 'Photosynthesis', 'Biochar' and 'Phytoextraction' are research hotspots in this field. In addition, more and more researchers are beginning to pay attention to research on co-contaminated soil, metal availability, chelating agents, and microbial-assisted phytoremediation. In summary, bibliometric, and visual analyses in the field of phytoremediation of heavy metals in soils identifies probable directions for future research and provides a resource through which to better understand this rapidly advancing subject.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Bibliometria , Solo
3.
J Leukoc Biol ; 115(2): 322-333, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726110

RESUMO

Scavenger receptor A (SRA) is preferentially expressed in macrophages and implicated as a multifunctional pattern recognition receptor for innate immunity. Hepatic macrophages play a primary role in the pathogenesis of alcoholic liver disease. Herein, we observed that SRA expression was significantly increased in the liver tissues of mice with alcohol-related liver injury. SRA-deficient (SRA-/-) mice developed more severe alcohol-induced liver disease than wild-type mice. Enhanced liver inflammation existed in alcohol-challenged SRA-/- mice and was associated with increased Notch activation in hepatic macrophages compared with wild-type control animals. Mechanistically, SRA directly bound with Notch1 and suppressed its S-glutathionylation, thereby inhibiting Notch pathway activation. Further, we determined that the SRA interacted with thioredoxin-1 (Trx-1), a redox-active protein. SRA inhibited Trx-1 dimerization and facilitated the interaction of Trx-1 with Notch1. Application of a Trx-1-specific inhibitory agent during macrophage stimulation abolished SRA-mediated regulation of the Notch pathway and its downstream targets. In summary, our study revealed that SRA plays a critical role in macrophage inflammatory response by targeting Notch1 for its glutathionylation. SRA-mediated negative regulation of Notch activation might serve as a novel therapeutic strategy for alcohol-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Receptores Depuradores Classe A/metabolismo , Macrófagos/metabolismo , Receptores Depuradores/metabolismo , Fígado/metabolismo , Fatores Imunológicos , Etanol/toxicidade , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Mediators Inflamm ; 2023: 7697699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37096155

RESUMO

Atopic dermatitis (AD) is a kind of chronic skin disease with inflammatory infiltration, characterized by skin barrier dysfunction, immune response dysregulation, and skin dysbiosis. Thymic stromal lymphopoietin (TSLP) acts as a regulator of immune response, positively associated with AD deterioration. Mainly secreted by keratinocytes, TSLP interacts with multiple immune cells (including dendritic cells, T cells, and mast cells), following induction of Th2-oriented immune response during the pathogenesis of AD. This article primarily focuses on the TSLP biological function, the relationship between TSLP and different cell populations, and the AD treatments targeting TSLP.


Assuntos
Dermatite Atópica , Linfopoietina do Estroma do Timo , Humanos , Citocinas , Queratinócitos , Pele/patologia
5.
Mol Med ; 29(1): 55, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085770

RESUMO

BACKGROUNDS: Renal fibrosis is a common pathologic process of most chronic kidney diseases (CKDs), becoming one of the major public health problems worldwide. Terminal fucosylation plays an important role in physiological homeostasis and pathological development. The present study aimed to explore the role of terminal fucosylation during kidney fibrogenesis and propose a possible anti-fibrosis treatment via suppressing aberrant terminal fucosylation. METHODS: We investigated the expression level of fucosyltransferase1 (FUT1) in CKD patients by using public database. Then, we further confirmed the level of terminal fucosylation by UEA-I staining and FUT1 expression in unilateral ureteral obstruction (UUO)-induced renal fibrosis mice. Immunostaining, qPCR, western blotting and wound healing assay were applied to reveal the effect of FUT1 overexpression in human kidney proximal tubular epithelial cell (HK-2). What's more, we applied terminal fucosylation inhibitor, 2-Deoxy-D-galactose (2-D-gal), to determine whether suppressing terminal fucosylation ameliorates renal fibrosis progression in vitro and in vivo. RESULTS: Here, we found that the expression of FUT1 significantly increased during renal fibrosis. In vitro experiments showed upregulation of epithelial-mesenchymal transition (EMT) after over-expression of FUT1 in HK-2. Furthermore, in vivo and in vitro experiments indicated that suppression of terminal fucosylation, especially on TGF-ßR I and II, could alleviate fibrogenesis via inhibiting transforming growth factor-ß (TGF-ß)/Smad signaling. CONCLUSIONS: The development of kidney fibrosis is attributed to FUT1-mediated terminal fucosylation, shedding light on the inhibition of terminal fucosylation as a potential therapeutic treatment against renal fibrosis.


Assuntos
Fucosiltransferases , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Fibrose/patologia , Fucosiltransferases/metabolismo , Rim/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
6.
J Dermatol Sci ; 109(2): 89-98, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36870927

RESUMO

BACKGROUND: Melanoma is the most common form of skin cancer. Given its high metastasis and high recurrence, its therapies are constantly updated. OBJECTIVE: The study aims to prove the efficacy of sodium thiosulfate (STS), an antidote to cyanide or nitroprusside poisoning, in melanoma treatment. METHODS: We tested the effect of STS by culturing melanoma cells (B16 and A375) in vitro and establishing melanoma mouse models in vivo. The proliferation and viability of melanoma cells were measured by the CCK-8 test, cell cycle assay, apoptosis analysis, wound healing assay, and transwell migration assay. The expression of apoptosis-related molecules, epithelial-mesenchymal transition (EMT)-associated molecules, and the Wnt/ß-catenin signaling pathway-related molecules were determined by Western blotting and immunofluorescence. RESULTS: The high metastasis of melanoma is considered to be linked to the EMT process. The scratch assay using B16 and A375 cells also showed that STS could inhibit the EMT process of melanoma. We demonstrated that STS inhibited the proliferation, viability, and EMT process of melanoma by releasing H2S. STS-mediated weakening of cell migration was related to the inhibition of the Wnt/ß-catenin signaling pathway. Mechanistically, we defined that STS inhibited the EMT process via the Wnt/ß-catenin signaling pathway. CONCLUSIONS: These results suggest that the negative effect of STS on melanoma development is mediated by the reduction of EMT via the regulation of the Wnt/ß-catenin signaling pathway, which provides a new clue to treating melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Transição Epitelial-Mesenquimal , Via de Sinalização Wnt , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , beta Catenina/metabolismo , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células
7.
Environ Res ; 222: 115376, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736755

RESUMO

Cadmium (Cd) and chromium (Cr) are widespread contaminants with a high risk to the environment and humans. Herein we isolated a novel strain of Serratia marcescens, namely strain S27, from soil co-contaminated with Cd and Cr. This strain showed strong resistance to Cd as well as Cr. S27 cells demonstrated Cd adsorption rate of 45.8% and Cr reduction capacity of 84.4% under optimal growth conditions (i.e., 30 °C, 200 rpm, and pH 7.5). Microscopic characterization of S27 cells revealed the importance of the functional groups C-O-C, C-H-O, C-C, C-H, and -OH, and also indicated that Cr reduction occurred on bacterial cell membrane. Cd(II) and Cr(VI) bioaccumulation on S27 cell surface was mainly in the form of Cd(OH)2 and Cr2O3, respectively. Further, metabolomic analyses revealed that N-arachidonoyl-l-alanine was the key metabolite that promoted Cd and Cr complexation by S27; it primarily promotes γ-linolenic acid (GLA) metabolism, producing siderophores and coordinating with organic acids to enhance metal bioavailability. To summarize, our results suggest that S27 is promising for the bioremediation of environments contaminated with Cd and Cr in tropical regions.


Assuntos
Cádmio , Cromo , Humanos , Cromo/metabolismo , Serratia marcescens/metabolismo , Biodegradação Ambiental , Adsorção
8.
J Exp Clin Cancer Res ; 42(1): 38, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721234

RESUMO

BACKGROUND: Hepatic inflammation is a common initiator of liver diseases and considered as the primary driver of hepatocellular carcinoma (HCC). However, the precise mechanism of inflammation-induced HCC development and immune evasion remains elusive and requires extensive investigation. This study sought to identify the new target that is involved in inflammation-related liver tumorigenesis. METHODS: RNA-sequencing (RNA-seq) analysis was performed to identify the differential gene expression signature in primary human hepatocytes treated with or without inflammatory stimulus. A giant E3 ubiquitin protein ligase, HECT domain and RCC1-like domain 2 (HERC2), was identified in the analysis. Prognostic performance in the TCGA validation dataset was illustrated by Kaplan-Meier plot. The functional role of HERC2 in HCC progression was determined by knocking out and over-expressing HERC2 in various HCC cells. The precise molecular mechanism and signaling pathway networks associated with HERC2 in HCC stemness and immune evasion were determined by quantitative real-time PCR, immunofluorescence, western blot, and transcriptomic profiling analyses. To investigate the role of HERC2 in the etiology of HCC in vivo, we applied the chemical carcinogen diethylnitrosamine (DEN) to hepatocyte-specific HERC2-knockout mice. Additionally, the orthotopic transplantation mouse model of HCC was established to determine the effect of HERC2 during HCC development. RESULTS: We found that increased HERC2 expression was correlated with poor prognosis in HCC patients. HERC2 enhanced the stemness and PD-L1-mediated immune evasion of HCC cells, which is associated with the activation of signal transducer and activator of transcription 3 (STAT3) pathway during the inflammation-cancer transition. Mechanically, HERC2 coupled with the endoplasmic reticulum (ER)-resident protein tyrosine phosphatase 1B (PTP1B) and limited PTP1B translocation from ER to ER-plasma membrane junction, which ameliorated the inhibitory role of PTP1B in Janus kinase 2 (JAK2) phosphorylation. Furthermore, HERC2 knockout in hepatocytes limited hepatic PD-L1 expression and ameliorated HCC progression in DEN-induced mouse liver carcinogenesis. In contrast, HERC2 overexpression promoted tumor development and progression in the orthotopic transplantation HCC model. CONCLUSION: Our data identified HERC2 functions as a previously unknown modulator of the JAK2/STAT3 pathway, thereby promoting inflammation-induced stemness and immune evasion in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Antígeno B7-H1 , Fator de Transcrição STAT3 , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Carcinogênese , Inflamação/genética , Ubiquitina-Proteína Ligases , Fatores de Troca do Nucleotídeo Guanina
9.
Transplantation ; 107(6): 1291-1301, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367925

RESUMO

BACKGROUND: Organ allograft rejection is mainly driven by T-cell response. Studies have shown that fucosylation plays essential roles in the immune cell development and function. Terminal fucosylation inhibitor, 2-deoxy-D-galactose (2-D-gal), has been reported to suppress immunoresponse of macrophages, but its effects on T-cell-mediated immune response and transplant rejection have not been fully explored. METHODS: The terminal fucosylation level in T cells was detected through ulex europaeus agglutinin-I staining. The consequences of 2-D-gal on murine T-cell proliferation, activation, cytokine secretion, and cell cycle were investigated in vitro. T-cell receptor signaling cascades were examined. Last, mouse skin transplant model was utilized to evaluate the regulatory effects of 2-D-gal on T-cell response in vivo. RESULTS: The expression of fucosyltransferase1 was upregulated in CD3/CD28-activated T cells along with an elevation of α(1,2)-fucosylation level as seen by ulex europaeus agglutinin-I staining. Furthermore, 2-D-gal suppressed T-cell activation and proliferation, decrease cytokines production, arrest cell cycle, and prevent the activation of T-cell receptor signaling cascades. In vivo experiments showed that 2-D-gal limited T-cell proliferation to prolong skin allograft in mice. This was accompanied by lower level of inflammatory cytokines, and were comparable to those treated with Cyclosporin A. CONCLUSIONS: Terminal fucosylation appears to play a role in T-cell activation and proliferation, and its inhibitor, 2-D-gal, can suppress T-cell activation and proliferation both in vitro and in vivo. In a therapeutic context, inhibiting terminal fucosylation may be a potential strategy to prevent allogeneic transplant rejection.


Assuntos
Transplante de Pele , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Aglutininas/metabolismo
10.
Microbiol Spectr ; 10(6): e0202822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36342281

RESUMO

The innate immune system is the first line of host defense against microbial infections. During virus infection, pattern recognition receptors (PRRs) are engaged to detect specific viral components, such as viral RNA or DNA, and regulate the innate immune response in the infected cells or immune cells. Our previous study demonstrated that scavenger receptor A (SRA), an important innate PRR, impaired the anti-hepatitis B virus (HBV) response in hepatocytes. Given that SRA is primarily expressed in macrophages, here, we assessed the function of SRA expressed in macrophages in response to RNA or DNA viral infection. SRA-deficient (SRA-/-) mice showed reduced susceptibility to viral infection caused by vesicular stomatitis virus (VSV) or herpes simplex virus 1 (HSV-1). In the virus-infected SRA-/- mice, compared with their wild-type (WT) counterparts, we observed low amounts of virus accompanied by enhanced interferon (IFN) production. Furthermore, SRA significantly inhibited the phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). We provided biochemical evidence showing that SRA directly interacts with the N-terminal kinase domain (KD) of TBK1, resulting in the limitation of its K63-linked ubiquitination. Moreover, we demonstrated that SRA negatively regulates the activity of TBK1 by promoting the recruitment of ubiquitin-specific protease 15 (USP15) to deubiquitinate TBK1. In summary, we have identified the connection between SRA and the TBK1/IRF3 signaling pathway in macrophages, indicating a critical role of SRA in the regulation of host antiviral immunity. IMPORTANCE During virus infection, PRRs are engaged to detect specific viral components, such as viral RNA or DNA, and regulate the innate immune response in the infected cells or other immune cells. We reported that deficiency of SRA, an important innate PRR, promoted IRF3 activation, type I IFN production, and innate antiviral responses against RNA and DNA viruses in vivo and in vitro. Furthermore, the biochemical analysis showed that SRA directly interacts with the KD domain of TBK1 and limits its K63-linked polyubiquitination, reducing TBK1 activation. Further analyses determined that SRA is a modulator for TBK1 activation via the recruitment of USP15, which delineated a previously unrecognized function for SRA in innate antiviral immunity.


Assuntos
Interações Hospedeiro-Patógeno , Interferon beta , Proteínas Serina-Treonina Quinases , Receptores Depuradores Classe A , Proteases Específicas de Ubiquitina , Animais , Camundongos , Antivirais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Imunidade Inata , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo
11.
Int Immunopharmacol ; 113(Pt A): 109378, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327873

RESUMO

D-mannose is a C-2 epimer of glucose, widely distributed in nature. Atopic dermatitis (AD) is a chronic inflammatory disease characterized by repetitious itching. The present study aimed to explore the protective effect and the underlying mechanism of D-mannose against the development of atopic dermatitis. We tested the effect of D-mannose by establishing DNCB (2,4-dinitrochlorobenzene)-induced AD mice models in vivo and culturing keratinocytes (HaCaT and NHEK) in vitro. The skin lesion severity was evaluated by histochemical staining. Cytokine expression levels were measured by real-time PCR and ELISA assay. The expression of the mammalian target of rapamycin (mTOR)/ nuclear transcription factor κB (NF-κB)-signaling-related molecules were determined by western blotting. Here, we found that topical supplementation of D-mannose remarkably attenuated skin lesions and recovered skin barrier function in AD mice model induced by DNCB. Furthermore, in vivo and in vitro experiments indicated that D-mannose inhibited tumor necrosis factor-α (TNF-α)-mediated increased expression of inflammatory cytokines. D-mannose also markedly downregulated TNF-α-stimulated activation of mTOR/NF-κB signaling pathway that was crucial for regulating the inflammatory condition. However, these effects were abolished by treatment with inhibitors of mTOR or NF-κB in HaCaT and NHEK. As far as we know, this is the first study uncovering the effective role of D-mannose via skin topical application. We found that D-mannose plays a regulatory role on inflammatory keratinocytes, suggesting its therapeutic utilization as a potential drug against atopic dermatitis.


Assuntos
Dermatite Atópica , Manose , Animais , Humanos , Camundongos , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno , Inflamação/metabolismo , Queratinócitos , Manose/uso terapêutico , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Pele/patologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Int Immunopharmacol ; 111: 109039, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914449

RESUMO

Atopic dermatitis (AD) is a severe inflammatory skin disease caused by a combination of genetic, immune, and environmental factors. Intestinal microbiome disorders and changes in the immune microenvironment are associated with AD. We observed that gut bacterial metabolite enterolactone (ENL) was significantly reduced in AD model mice. Notably, patients with early childhood-onset AD exhibited decreased sera ENL level compared to the healthy controls, and the ENL level was negatively correlated with the SCORAD index. Secoisolariciresinol-diglycoside (SDG) is a natural dietary lignan of flaxseeds that can be converted by intestinal bacteria to ENL. Repeated applications of 2,4-dinitrochlorobenzene (DNCB) were performed on the ear and dorsal skin of mice to induce AD-like symptoms and skin lesions. Oral administration of SDG significantly decreased serum IgE levels and limited skin inflammation in the DNCB-induced AD mice. In addition, SDG treatment strongly limited the Th2 responses in AD mice. Moreover, we demonstrated that the IL-4 production was significantly suppressed by ENL under Th2 polarization conditions via the JAK-STAT6 signaling pathway in a concentration-dependent manner. We concluded that SDG and its derived metabolite ENL ameliorated AD development by reducing the Th2 immune response. These results suggested that SDG and ENL might be exploited as potential therapeutic candidates for AD treatment.


Assuntos
Dermatite Atópica , Lignanas , 4-Butirolactona/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Butileno Glicóis , Pré-Escolar , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno , Glucosídeos , Humanos , Imunidade , Lignanas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia
13.
Biomed Pharmacother ; 154: 113602, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029544

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although sorafenib is a standard first-line molecule-targeted drug against advanced HCC, the drug resistance development and adverse side effects usually limit its efficacy. This study investigated the effect of fucoidan on the sorafenib sensitivity of sorafenib-resistant human HCC cell line HepG2-SR established by long-time exposure of HepG2 to sorafenib. We demonstrated fucoidan combined with sorafenib synergistically promoted apoptosis and cell cycle arrest whereas inhibited cell migration in HepG2-SR cells. This combination treatment effectively suppressed the cellular epithelial growth factor receptor (EGFR) nuclear distribution and downstream gene transcription. Interestingly, fucoidan bound the cell surface EGFR, dampening EGFR translocation to lipid raft and further nuclear distribution, restoring the sorafenib sensitivity in HepG2-SR cells. Blocking fucoidan-EGFR interaction using EGFR antibody restrained the enhanced anti-tumor effects upon the combined administration. Besides, EGFR knockdown abolished the combination treatment-improved anti-tumor efficacy. This combination also suppressed in vivo xenograft tumor growth in nude mice. Our present study uncovered that fucoidan overcame sorafenib resistance in HCC via its interaction with cell membrane EGFR and further suppression of EGFR redistribution and downstream signaling in sorafenib-resistant cells. Overall, current results suggest that simultaneous treatment of fucoidan and sorafenib might serve as a potential therapeutic strategy against sorafenib-resistant HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Compostos de Fenilureia/farmacologia , Polissacarídeos , Receptores de Fatores de Crescimento , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Innate Immun ; : 1-13, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35671705

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a type of idiopathic interstitial pneumonia with a poor clinical prognosis. Increasing evidence has demonstrated that epithelial-mesenchymal transition (EMT) contributes to the production of pathogenic myofibroblasts and plays a pivotal role in the development of pulmonary fibrosis. Mannan-binding lectin (MBL) is a soluble calcium-dependent complement molecule. Several studies have reported associations between serum MBL levels and lung diseases; however, the effect of MBL on IPF remains unknown. The present study observed aggravated pulmonary fibrosis in bleomycin-treated MBL-/- mice compared with their wild-type counterparts. Lung tissues from bleomycin-treated MBL-/- mice displayed a more severe EMT phenotype. In vitro studies determined that MBL inhibited the EMT process through attenuating store-operated calcium entry (SOCE) signaling. It was further demonstrated that MBL promoted the ubiquitination of Orai1, an essential component of SOCE, via pyruvate dehydrogenase kinase 1 (PDK1)-serum glucocorticoid-regulated kinase 1 signaling. PDK1 inhibition abolished the MBL-mediated regulation of SOCE activity and the EMT process. Notably, biochemical analysis showed that MBL interacted with PDK1 and contributed to PDK1 ubiquitination. In summary, the present findings suggested that MBL limited the EMT phenotype in human alveolar epithelial cells through regulation of SOCE, and MBL could be recognized as a potential therapeutic target for IPF.

15.
Front Immunol ; 13: 877650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464439

RESUMO

This study investigated the protective properties and mechanisms of D-mannose against hepatic steatosis in experimental alcoholic liver disease (ALD). Drinking-water supplementation of D-mannose significantly attenuated hepatic steatosis in a standard mouse ALD model established by chronic-binge ethanol feeding, especially hepatocyte lipid deposition. This function of D-mannose on lipid accumulation in hepatocytes was also confirmed using ethanol-treated primary mouse hepatocytes (PMHs) with a D-mannose supplement. Meanwhile, D-mannose regulated lipid metabolism by rescuing ethanol-mediated reduction of fatty acid oxidation genes (PPARα, ACOX1, CPT1) and elevation of lipogenic genes (SREBP1c, ACC1, FASN). PI3K/Akt/mTOR signaling pathway was involved in this effect of D-mannose on lipid metabolism since PI3K/Akt/mTOR pathway inhibitors or agonists could abolish this effect in PMHs. Overall, our findings suggest that D-mannose exhibits its anti-steatosis effect in ALD by regulating hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Animais , Cadáver , Modelos Animais de Doenças , Etanol/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Hepatopatias Alcoólicas/tratamento farmacológico , Manose/metabolismo , Manose/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
16.
Cell Mol Gastroenterol Hepatol ; 14(1): 75-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381393

RESUMO

BACKGROUND & AIMS: Liver fibrosis represents a hallmark of most chronic liver diseases (CLD) triggered by recurrent liver injury and subsequent myofibroblast transdifferentiations of resident hepatic stellate cells (HSCs). Mannan-binding lectin (MBL) is potentially involved in hepatic fibrosis in CLD through unclear mechanisms. Therefore, we investigated the crosstalk between MBL and HSCs, and the consequent effects on fibrosis progression. METHODS: Samples from patients with liver cirrhosis were collected. MBL deficiency (MBL-/-) and wild-type (WT) C57BL/6J mice were used to construct a CCl4-induced liver fibrosis model. Administration of MBL-expressing, liver-specific, adeno-associated virus was performed to restore hepatic MBL expression in MBL-/- mice. The human HSC line LX-2 was used for in vitro experiments. RESULTS: MBL levels in patients with liver cirrhosis were correlated with disease severity. In the CCl4-induced liver fibrosis model, MBL-/- mice showed severer liver fibrosis accompanied by reduced senescent activated HSCs in liver tissue compared with WT mice, which could be inhibited by administering MBL-expressing, liver-specific, adeno-associated virus. Moreover, depleting senescent cells with senolytic treatment could abrogate these differences owing to MBL absence. Furthermore, MBL could interact directly with calreticulin associated with low-density lipoprotein receptor-related protein 1 on the cell surface of HSCs, which further promotes senescence in HSCs by up-regulating the mammalian target of rapamycin/p53/p21 signaling pathway. CONCLUSIONS: MBL as a newfound senescence-promoting modulator and its crosstalk with HSCs in the liver microenvironment is essential for the control of hepatic fibrosis progression, suggesting its potential therapeutic use in treating CLD associated with liver fibrosis.


Assuntos
Células Estreladas do Fígado , Lectina de Ligação a Manose , Animais , Calreticulina/metabolismo , Calreticulina/farmacologia , Fibrose , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/patologia , Mamíferos/metabolismo , Lectina de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
17.
J Dermatol ; 49(5): 496-507, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35347767

RESUMO

Psoriasis is a chronic inflammatory skin disease mediated by host immune responses. Plasmacytoid dendritic cells (pDC) and interferon (IFN)-α secreted by pDC are involved in the initiation of psoriasis. Mannan-binding lectin (MBL), a vital component of the complement pathway, plays a critical role in innate immune defense and the inflammatory response. Our previous study found that MBL could exacerbate skin inflammation in psoriatic mice, but the effect of MBL on pDC remains unstudied. Herein, we revealed that the circulating level of MBL was elevated in patients with psoriasis compared with the healthy controls. Moreover, the MBL level was positively correlated with disease severity, relative inflammatory cytokine levels, and peripheral blood (PB) pDC frequency in psoriasis. An in vitro study determined that the MBL protein could promote the differentiation of human pDC and upregulate the production of relative inflammatory cytokines and chemokines. Additionally, MBL-deficient (MBL-/- ) mice exhibited decreased accumulation of pDC in lymph nodes, spleens, and skin lesions with reduced secretion of pDC-related cytokines compared with wild-type (WT) mice in the preliminary stage of psoriasis induced by imiquimod. Notably, the differentiation of pDC from bone marrow (BM) cells derived from MBL-/- mice was weakened compared with that from WT mice upon Fms-like tyrosine kinase 3 ligand (Flt3L) incubation. Mechanistic research indicated that the signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 8 (IRF8) axis was responsible for MBL-modulated pDC differentiation. In summary, these results suggest that MBL exacerbates the severity of psoriasis by enhancing pDC differentiation and pDC-related cytokine secretion via the STAT3-IRF8 axis, thus providing a new target for psoriasis treatment.


Assuntos
Lectina de Ligação a Manose , Psoríase , Animais , Citocinas/metabolismo , Células Dendríticas , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon-alfa/metabolismo , Lectina de Ligação a Manose/efeitos adversos , Lectina de Ligação a Manose/metabolismo , Camundongos , Psoríase/patologia , Fator de Transcrição STAT3/metabolismo
18.
Oxid Med Cell Longev ; 2021: 5524705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211624

RESUMO

Ischemic stroke is one of the leading causes of death and disability for adults, which lacks effective treatments. Dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs) exerts beneficial effects on ischemic stroke by attenuating neuron death and inflammation induced by microglial activation. However, the impact and mechanism of n-3 PUFAs on astrocyte function during stroke have not yet been well investigated. Our current study found that dietary n-3 PUFAs decreased the infarction volume and improved the neurofunction in the mice model of transient middle cerebral artery occlusion (tMCAO). Notably, n-3 PUFAs reduced the stroke-induced A1 astrocyte polarization both in vivo and in vitro. We have demonstrated that exogenous n-3 PUFAs attenuated mitochondrial oxidative stress and increased the mitophagy of astrocytes in the condition of hypoxia. Furthermore, we provided evidence that treatment with the mitochondrial-derived antioxidant, mito-TEMPO, abrogated the n-3 PUFA-mediated regulation of A1 astrocyte polarization upon hypoxia treatment. Together, this study highlighted that n-3 PUFAs prevent mitochondrial dysfunction, thereby limiting A1-specific astrocyte polarization and subsequently improving the neurological outcomes of mice with ischemic stroke.


Assuntos
Astrócitos/metabolismo , Suplementos Nutricionais/análise , Ácidos Graxos Ômega-3/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Masculino , Camundongos
19.
J Dermatol Sci ; 100(2): 120-128, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32938565

RESUMO

BACKGROUND: Wound healing is a complex physiological process that is crucial for reestablishing the epithelial barrier following injury. OBJECTIVE: The aim of this study was to demonstrate the efficacy of calcipotriol, a synthetic vitamin D3 analogue, in wound healing in an acute mice wound model. METHODS: An excision wound model was established in mice, and the wound healing activity of calcipotriol was evaluated. Human keratinocyte cell lines, HaCaT and NHEK, were utilized in in vitro skin wound healing model. Cytokine expression levels were measured by real-time PCR and ELISA assay. The expression of epithelial-mesenchymal transition (EMT)-associated molecules and the phosphorylation of Yes-associated protein (YAP) was determined by western blotting. RESULTS: The increase in re-epithelialization by calcipotriol treatment early in the wound was associated with the EMT process. A scratch assay using HaCaT and NHEK cells also showed that calcipotriol administration resulted in effective wound closure. We demonstrated that calcipotriol promoted keratinocyte migration by interfering with the Hippo pathway. Calcipotriol-mediated enhancement of cell migration is related to downregulated phosphorylation of YAP and increased levels of YAP and PDZ-binding motif (TAZ). Mechanistically, we defined that calcipotriol facilitated the crosstalk between the YAP/TAZ and TGF-ß/Smad signaling pathways, eliciting EMT in keratinocytes during the wound healing process. CONCLUSIONS: These results suggest that the positive effect of calcipotriol on keratinocyte migration is mediated by the induction of EMT via the regulation of Hippo pathway, which promotes the acceleration of wound closure.


Assuntos
Calcitriol/análogos & derivados , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Reepitelização/efeitos dos fármacos , Pele/lesões , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Calcitriol/farmacologia , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células HaCaT , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
20.
Nanotechnology ; 31(8): 085708, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675746

RESUMO

3D flower-like Fe3S4 microspheres and quasi-sphere Fe3S4-RGO hybrid-architectures were successfully fabricated by a facile template-free hydrothermal method. The results of morphology revealed that the single Fe3S4 was composed of many nanoflakes and the Fe3S4-RGO composites mainly distributed together into a ball up and down the RGO sheet. The electromagnetic parameters of the single Fe3S4 and Fe3S4-RGO composites could be controlled by adjusting different filler loading and the addition of different GO to achieve impedance matching. Both the single Fe3S4 and Fe3S4-RGO composites exhibited an excellent EM absorption ability. The minimum reflection loss (RL) of the single Fe3S4 with 50% filler loading could achieve -66.87 dB at 10.57 GHz for the thickness of 2.2 mm, and the absorption bandwidth (RL < -10 dB) could reach 3.49 GHz. For the Fe3S4-RGO composites, the minimum RL of FSR-1 could be -40.25 dB at 9.67 GHz with the thickness of 2.0 mm. In addition, the effective absorption bandwidth of FSR-2 could reach 3.85 GHz at only 1.45 mm and the minimum RL was -29.25 dB at 14.24 GHz. Consequently, the single Fe3S4 and Fe3S4-RGO composites are promising materials as a high performance and adjustable EM wave absorber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...